标题:第十三章 度量 内容: 一、度量问题A. 何以论度量1. 度量的重要 。 在知识论谈度量的似乎不多,可是就意念底摹状与规律说,度量是很好的例子。 它底摹状成分明显,规律成分也明显。 就我们对于意念底说法说,我们应该提出度量来讨论。 可是,度量底重要不止于此;它本身也是值得特别提出讨论的。 度量对于人生底影响非常之大。 有人以为剖斗折衡而民不争。 对于这一思想,有几方面的话好说,可是我们在这里不预备讨论。 不能度量时间,我们不能表示时间有多少,我们只能说很久很久的时候,不能度量空间,不能表示地方有多远,我们只能说很远很远的地方。 在贸迁有无情况之下,度量更是重要,无论钱币制度发明以前或发明以后,在贸迁底程序中,我们总得要引用度量,钱币本身就是度量。 2. 对知识的重要 。 度量对于知识底影响,更是重大。 权然后知轻重,度然后知长短,就表示度量对于知识底重要。 我们要知道轻重,要知道长短我们不能不利用度量。 从前是这样,现在仍是这样,并且更是这样。 从前也许只是轻重长短问题,现在则气压,温度,雨量光声速度,物理学,化学,心理学等等中底种种现象,都可以因度量而使我们得到精细的靠得住的知识。 科学是离不了度量的。 这就是说,纯粹的学问是离不了度量,而纯粹的知识也离不了度量。 对于实际生活中的知识轻重长短度量固然重要,可是对于纯粹知识,度量更是重要。 3. 度量系统横贯各门科学 。 度量自成一系统。 关于这一点,以后当要提出讨论,在这里我们只注重度量之为一整的系统而已。 它四通八达,本身差不多成一门学问,虽然注意它的人们似乎还不多。 近十年来,有人注意到它,但是大多数的人似乎还没有感觉到它底重要性。 科学虽分门别类,然而所引用的度量制度,度量方法,度量工具,横贯各门科学。 即在别的方面没有多大关联的学问,在度量方法上,仍有关联,其结果当然是仍有贯通的地方。 科学愈进步,度量也愈进步,度量可以因科学之所发现而益精。 度量愈进步,科学也愈进步,科学可以利用精细的度量,而得前此所不能得到的发现。 科学不发达而要量光的速度,似乎是办不到的,可是度量了光底速度之后,物理学又可根据此量度去作进一步的发现。 不但物理学受影响,别的学问也受影响。 寒暑表就其为知识说,也许是一门学问的发现,就其为度量说,不但许多门学问可以利用,即日常生活也受其惠。 论度量不就是谈引用度量的学问,它本身是一系统,是一题目,而就知识论或本书所认为是知识论的知识论说,它是一重要的问题。 4. 度量最能表示本书主旨 。 从本书底立场说,度量非常之重要,它与因果差不多有同样的情形,可是,也许比因果更足以表示本书底主旨。 本书底主旨是以经验之所得还治经验,或以得自官觉者还治官觉。 知识者实在是以所与摹状所与,在多数所与中抽出意念以为标准,然后引用此标准于将来的所与,以为接受将来的所与底方式。 度量底理论就包括这样的程序,它也是以得自所与的意念去接受所与,不过它有一特点,它虽同样地是以意念去接受所与,然而它不止于以意念去接受所与而已;它所牵扯到的意念有具体的表现以为代表。 例如一尺不只是一普通的意念而已。 不仅是一普通所谓尺而已,而且有一具体的东西,在所与中与别的所与同场呈现。 以尺量布,一方面是以所与量所与,另一方面是以意念去接受所与。 也许有人以为这与别的情形同样。 因为别的意念也有具体的表现,例如笔。 别的意念有好些的确有具体的表现,这的确不错;但是别的意念底具体的表现不同时是接受底工具。 度量底单位底具体底表现本身是接受工具。 这一特点值得我们注意。 度量之所以给我们以比较精确的知识,就是因为它有具体的标准。 B. 度量所牵扯的1. 量 。 度量所牵扯的头一点当然就是量。 量是一非常之麻烦的意念。 对于这意念我们自愧没有一种满意的看法或说法。 同时量这一意念又是无法避免的问题,量度总得要量为度,既谈度量,自应谈量。 可是,我们实在没有满意的说法。 也许我们可以模模糊糊地说,量是单位与数目联合起来,对于任何东西所表示的情形。 如果我们说一师兵,五张桌子,一百担米,三十个橘子,一尺布,两百斤煤,我们都表示量。 师,担,尺,斤,都是单位,似乎不发生问题,但是其所以没有问题者,也许是因为它们不只是单位,而且是标准的单位;用它们去表示量,也就是用度量去表示量。 桌子与橘子也应该是单位,但是把它们视为单位也许就有问题。 一百斤煤可以说是表示煤底量,五张桌子不大容易说是表示桌子底量,三十个橘子情形相似。 对于这些,与其说桌子和橘子是单位,不如说张和个是单位,并且与其说张和个是单位,不如说一张桌子和一个橘子是单位。 由此类推,问题就不小了。 本章只假设量而已,不提出讨论。 2. 数目和单位 。 量、数(动词)和度量都不同,虽然它们都牵扯到数目。 它不但都牵扯到数目而且也都牵扯到单位。 数目问题也相当的复杂,本书不讨论。 单位问题下段即论,本条也不讨论。 量不是动作,数(动词)和度量都是。 后者虽然都是动作,然而分别很大。 就单位说,数牵扯到自然的单位,度量牵扯到标准的单位。 所谓自然单位就是一类东西底个体。 数牵扯到一类东西底个体,例如二十个人,五张桌子,三十个橘子。 就人说,只要我们是数人底多少,我们说二十个人,我们不管胖的,瘦的,高的,矮的;就橘子说,只要我们是数橘子底多少,我们也不管橘子底大小,生熟等等,数是表示个体与数目底一一相应底动作。 度量则不然,它不是表示个体与数目底一一相应底动作,而是表示标准单位与数目底一一相应底动作。 米可以数,也可以量,数米底结果也许是几万或几十万粒;量米底结果也许是几升或几斛。 二者都牵扯到量与数目,然而前者没有加入标准的单位,而后者非有标准的单位不可。 3. 积量 。 除量外尚有积量。 中文中这两名词都有量字,反使我们把量和积量混乱起来。 其实他们是不同的。 在(1)条我们已经表示量是不容易说的。 积量也是不容易说的。 五张桌子表示量,一张桌子五尺长表示积量。 量可以是某时某地某类东西底数目,积量是一件东西与一标准单位在某某方面的比率。 所说的某某方面就是长短,宽窄,厚薄,轻重等等。 普通说一件东西底大小如何,或长短如何,或轻重如何都是就积量说的。 度量所度的也许是量,也许是积量;如果量米,所量的是量;如果量桌子底长短所量的是积量。 我们对于量没有满意的说法,对于积量也没有满意的说法。 4. 度量底结果或对象 。 有一说法是说量和积量都是度量底结果或度量底对象。 这说法与一部分流行的习惯很接近。 把物视为物理学所研究底对象,把空间视为几何学所研究底对象,在某一时期内是一非常之流行的说法。 这说法是否仍流行我不敢说。 这说法似乎表示学者比较地与思想接近,比较地与经验不接近。 在物理学和几何学相当发达之后,对于习于这两门学问的人们,这说法也许可以引用到他们经验中的物和空间上去。 在这两门学问尚未发达的时候,对于不习于这两门学问的人们,这说法似乎不行,他们经验中有物也有空间,他们所需要的是独立于这两门学问的说法。 量和积量都是度量底结果这一说法似乎有毛病。 显而易见,量和积量也是度量底对象。 量和积量都是度量底对象这一说法也有方才所说的问题。 但是除此说法之外,我们不知道比这说法更满意的说法,此所以我们只假设量与积量而已。 C. 单位与标准单位1. 自然的和非自然的 。 以上曾说度量总牵扯到单位。 现在暂且以标准的单位为单位。 这就是说,不是标准的单位,例如一个人,一枝笔,我们暂且不视为单位。 标准也有不同的意义。 X要满足人底标准才是人;虽然X底大小胖瘦与这标准不相干,Y要满足笔底标准才是笔,虽然Y底长短粗细不相干。 我们现在所谈的标准虽有这意义,然而不只有这意义。 我们所要的标准是担斛尺斤底标准,是各单位在具体底表现上满足度量底要求底标准。 标准的单位也有自然与非自然两种。 有好些的单位是自然的,本来就有的,不是我们所创作的,例如一年一月一日;有好些不是自然的,不是本来就有的,例如一分钟一秒钟。 在从前也许自然的单位多,在现在的确是非自然的单位多。 非自然的单位之为单位似乎没有问题。 自然的单位也许有人以为根本不是单位。 这似乎是错误。 单位不因其为自然的东西或事体就中止其为单位。 只要我们能够利用它以为比率底工具,合乎度量底要求,它就是单位。 2. 创作成分 。 非自然的单位使人一下子就想到创作。 非自然的单位的确有创作成分。 创作总有那自人作始底意思。 非自然的单位总难免那自人(或创作者)作始的意思。 可是请注意以下这一句相当麻烦的话:所创作的是一件东西或事体之为单位,而不必是该单位之为东西或事体。 一尺那样的棍子是一尺,可以当一尺用,它本没有那用处,它底用处是我们所创作的;它底长度不是我们所创作的,可是,以它那样长的长度为一尺是我们所创作的。 我们这里只说一单位之为东西或事体不必是我们所创作的。 当然也可以是我们所创作的。 在度量衡底制造厂里,我们可以说是从整块木头里产生一大批的尺。 大致说来,愈精巧的单位之为东西或事体,我们底创作成分愈多。 但是,就这些东西或事体之为单位说,创作成分同样。 这问题以后谈武断成分时再谈,现在就此打住。 3. 以坚固和变更少的为宜 。 单位最好是一件比较坚固的东西。 是事体的单位底问题也许麻烦一点,但主旨同样。 这问题与经济学书中所谈的关于钱币底问题相似。 这是实际问题。 我们用以为单位的东西最好能坚固,不然的话,常常更换,既不方便,也不经济。 单位最好也不甚变更。 所谓概念底单位既无所谓变更,也无所谓坚固与否。 有变更问题与坚固问题的,只是那是东西的具体的单位。 我们可以说没有不变的东西。 是单位的东西也变。 求单位之不变似乎办不到,问题似乎只在变底多少及有无秩序而已。 以变更多的东西为单位不如以变更少的东西为单位,以变更没有秩序的东西为单位不如以变更有秩序的东西为单位。 竹木铁石等等都是随天气底冷热而变的,虽然它们底变底大小不相等。 巴黎有白金米达,其所以用白金者,因为它底变更非常之小,以它为标准又可以量到别的东西底变更。 4. 易于流行问题 。 除此之外,单位有易于流行的问题。 有好些单位也许没有这问题,有好些的确有这问题。 这问题是单位本身底问题也是单位底问题。 一尺是那么长,也许那么长的尺不方便。 说不方便就是说通行时有阻碍。 也许改长一点或改短一点要方便的多。 与别的度量制度底单位一致也许方便,也许不方便。 以木为尺也许方便,虽然就材料底变更说,也许不如以钢为尺。 这一类的问题非常之多,并且大都是常识方面的问题,在这里我们只提及而已。 D. 运用单位的方法1. 单位不能离运用方法 。 度量免不了有运用单位底方法或运用工具底方法。 以尺量布所运用的是单位,以寒暑表量温度所运用的是工具。 无论所运用的是工具或单位,运用总有方法或方式或标准底问题。 单位也可以说是活的,置而不用它就死了,差不多不成其为单位了。 活的单位不能与用法分开。 就是布店里量一匹布也是就布底沿边成一近乎直线地量下去,不是用尺在布匹上乱比一阵。 市上用秤常常发生运用方法问题,买东西与卖东西底利害不同,彼此都有时不守正常的或标准的运用方法。 在这种情形之下,结果靠不住。 从交易方面说,有利此害彼的情形,从知识方面说,这不遵方式的动作根本不是度量。 2. 无分于简单与复杂 。 运用方法底重要,也许是从复杂的度量方面着想,更为容易明白。 试验室中量光底速度是一比较复杂的度量底例子。 这度量有意念上的设计,有事实上的安排,所用的工具有非常之精巧的,用工具的人要有高深的知识,有成熟的训练,并且要特别小心,才有相当的结果,不然的话,真是差之毫厘,谬以千里。 其所以如此者,当然是因为所设计的所安排的场合,所引用的工具有理论上的要求,有事实上的条件,有运用的方法;度量者只能如此如彼地进行度量,不能随随便便地进行。 复杂的度量如此,简单的度量也是如此。 复杂的度量所牵扯的情形复杂,简单的度量所牵扯的情形简单,至于需要遵守运用方法,不因复杂与简单而有两样的标准。 别的不说,即以量病人底体温而论,也有比较简单的运用方法,不照此方法而乱用寒暑表,所得的结果不一定表示病人底温度。 3. 方法底理 。 所谓运用方法,就是所运用的单位或工具,及所量底对象,二者之间所牵扯的理。 这理当然也是固然的理。 寒暑表底理显而易见,主要部分是水银因温度底高低而涨缩。 在平衡状态之下,这涨缩是有规矩的。 要运用寒暑表就得维持这平衡的状态,让固然的理在近乎标准的条件之下现实。 无论度量如何的复杂或简单,它总得遵守单位或工具与对象二者之间底理。 复杂的度量所牵扯到的理也许多,简单的度量所牵扯到的理也许少,但是理之须要遵守总是一样。 我们说过理是固然的理。 说理是固然的理,表示(一)它不是我们所创作的。 寒暑表虽是我们所创作的,然而水银和温度底关系不是我们所创作的。 (二)它是非遵守不可的。 不遵守它,我们不能得我们所要得到的结果。 (三)它不是随我们底便的。 以后我们要讨论度量底武断问题。 这里所说的运用方法底重要,与那一问题有密切关系。 二、时空底度量A. 时底度量1. 川流的时间 。 这里所谈的时间是川流的时间,是论道书中几与数合称为时的时间。 川流的时间才是度量底对象。 川流的时间老是川流的。 要度量它,似乎是不容易的事。 好在关于川流底度量,我们幸运得很,有我们所习惯的年月日。 这里说我们所习惯的年月日,因为这样的年月日是相对于我们底地点的。 在北极情形就不是这样的。 据说艾斯奇莫人谈到相当时候以前是没有办法的,我们所习惯的年月日而认以为非常之自然的,在他们就不能引用。 同时他们底文化水准又只有那么高,非自然的单位不容易发明,他们从前谈以往,只好用非常之久,或很久以前,或不久以前,这样的话,他们没有法子说多少月前或多少日前。 这情形是否事实,我们不敢说,但是如果我们想像他们所居的地点,这情形也许是有的。 无论如何,这样的自然的单位底引用是相对于地点的。 有此相当的地点,才有此幸运。 2. 时间架子 。 对于大多数人底地点,自然的单位是可以引用的。 在知识论,我们固然不必提到这种偶然的情形,也不必一定不谈到这种偶然的情形。 有这样的单位引用,当然是一件幸运的事。 普通一点地说,我们不必提到年月日,我们只谈到自然的单位就行。 自然的单位底引用还是要有数目意念才行。 数目有两个用法。 一是表示秩序的用法,一是不表示秩序而只注意到多少底用法。 在中文,前者加第字,后者不加。 以自然的单位或非自然的单位引用到时间上去,而又加上表示秩序的数目字,例如第一天,第二天,或第一点钟或第二点钟等等,就成为架子时间底表示。 我们可以设立一武断的出发点,例如耶稣诞生或民初底黄帝纪元。 从此出发点,加上有秩序的单位,无论往前或往后排列起来,这排列就是事实上我们所引用的时间架子。 这架子非常之有用,它有点象图书馆底书架子;任何事体发生,它总在这架子中,有它底时间上的位置,好象任何图书馆底书都在书架子上有它底位置一样。 3. 不是架子的单位底引用 。 同时自然或非自然的单位有另外一用法,这就是只度量川流而不必牵扯到架子或秩序。 上次欧战底前一年或后一年既是单位又是架子或秩序。 模糊一点地说,前者是一九一三年,后者是一九一九年。 可是一年只是一单位,它不过只是那样长的时候而已,它根本无所谓大战之前或大战之后。 一年是多么长呢? 我们会说十二个月或者三百六十五天。 我们知道对于没有经验过所谓一月或一天者,这句话等于一算学公式而已,可是对于曾经经验过月和天的,这句话就有经验上的意义。 说一本卅万言的书要一年才能写成,这与纪元前或纪元后毫不相干,与去年明年也不相干。 说一件衣服要半月才能做好或某一封信要写两天,这只是以月日为单位,表示所说的事体底完成,要费那么多的时候而已。 这是就自然的单位说的。 非自然的单位发明之后,度量底痕迹更显明。 从前曾以水池载水,底下留一小洞让水流出去,全池的水流尽就是一时间底单位。 从前的人也许会说:某件事体颇费工夫,非流三池水不行。 所谓Hour glass也是这一类的单位。 这些单位都可以引用,都是度量底单位。 但是,它们都没有法子排成秩序,所以与时间架子不相干。 就非自然的单位说,要等到钟表发明之后,度量与秩序二者底用处才合一。 自然的单位本来就是二者合一的。 也许因为如此,这不同的用处需要特别的表示一下。 4. 时间架子仍是以度量为本 。 本章底主题是度量,就度量说(3)条所说的比(2)条重要。 单位总是度量底单位。 要有这样的单位,我们才能把它排列起来成为秩序。 我们要时间架子或秩序,我们也要度量川流的单位。 不是度量单位的事体有先后,有始终,有继承,我们可以把它们排列起来,可是,这样的排列并不足以表示时间架子或时间秩序。 这样的事体虽有先后,有终始,有继承,然而长短大不一样,我们虽然可以把这些事体排列起来,我们不能在此排列中找出世之相去究竟有多少时候。 从时间架子说,所要的是单位,或度量底单位,无论该单位是自然的或非自然的。 从这一方面说单位底用处,度量比秩序更为重要。 在事实上那个用处在先,那个在后,我们不敢说,也无须乎有所表示。 B. 空间底度量1. 居据底度量 。 时底度量是川流底度量,空间底度量是居据底度量。 最好而又最浅近的例子是游记中的由某某寺出发,西行三十里达某某山,南行四十里达某某河,沿河西行又三十里达某某庙空间底度量所要得的总是居据底距离底长短或远近。 居据底距离底远近总是某一居据和另一居据底距离底远近。 以上的寺山水庙都是居据,而卅里或四十里都是这些居据之间的距离。 空间底度量都是居据底度量。 我们不要以为居据底度量不是空间底度量。 2. 自然的单位不满意 。 对于空间底度量,我们没有对于时间底度量那样的幸运。 我们没有自然的单位,除非我们把我们自己底脚步当作单位。 事实上我们常常用它,但是这一单位赶不上时间方面的自然单位。 脚步有大有小,视为单位本身就不成其为标准。 手与脚都可以做单位,不满意底理由同样。 同时以自己底筋肉动作为度量,以自己底身体底某一部分为单位是非常之自然的事体。 在非自然的单位未发现之前,我们只好利用这种办法。 这还是从距离小的方面着想,在距离小的方面上,这种办法可以实行。 若从距离大的空间着想,这办法根本不适用。 对于空间不但没有好的自然单位,而且这不满意的单位底引用也有限制。 3. 架子和度量 。 空间也有空间架子与度量底问题。 我们可以由一点出发,向X,Y,Z三不同的方向度量下去,以之表示立体的空间。 地球上(至少在地图中的地球上),已经有经纬度底划分,这经纬度既表示空间架子,也表示空间底度量。 实在的地球上虽然没有划出这样的界线,然而航海的船有表示经纬底工具,结果是等于界线底划分。 假如船在海中失事,发出求救底信号,只要船上的人表示他们底经纬度,附近的船不但知道失事的船底所在地,而且知道失事的船离他们有多远。 这就表示经纬不但成为空间或居据架子,而且是空间或居据底度量。 对于地球,我们可以这样地办,对于宇宙,我们也可以这样办,问题也许复杂得多,然而结果是一样的。 4. 二者底引用单位是一样的 。 架子与居据虽有不同的地方,然而引用单位是一样的,在时间方面我们可以说:那篇文章要写一个月,也可以说:那篇文章要下月十五才能写完,今日已经是十四了。 在空间方面我们可以说:从龙头村进城要走二十里路,也可以说:龙头村离城有二十里路。 里这一单位和一个月那一单位一样,它不仅可以表示距离底度量而且可以表示居据底地点。 川流的时间有方向,并且只有一方向。 就这一点说,时间底问题也许因此简单一点。 居据本身无所谓方向,可是,它可以说至少有三积量,问题也许因此要复杂一点。 时间架子似乎是很容易想到的。 空间架子不大容易想到。 空间底度量和时间底度量一样,似乎是很容易想到的。 单位底用处在度量方面比架子方面重要。 C. 其它的度量1. 时空度量底基本 。 时空底度量非常之重要。 其它度量大都牵扯到时空底度量,不牵扯到川流底度量,就牵扯到居据底度量。 彼此之间那一基本颇难说,也不必研究。 现在用的表虽量川流,然而要利用空间居据底度量,表上划出一格一格的空间出来,也就是表示利用居据底度量,以为川流底度量。 可是从前的Hour glass虽占空间而不牵扯到居据底度量。 从空间底度量说,有时牵扯到时间底度量,例如天文学里说的多少光年,有时不牵扯到时间底度量,例如量李庄到昆明底远近。 时与空二者底度量虽有时牵扯到彼此,然而不必牵扯到彼此。 2. 其余的度量大都牵扯到时空底度量 。 可是,除最简单的度量,例如量一匹布,不牵扯到时空底度量外,其余的稍微精细一点的度量总难免牵扯到时空底度量。 普通量房间温度的寒暑表不牵扯到时间,可是,的确牵扯到空间底度量,寒暑表本身(即工具本身)即须有一格一格的空间表示度数。 量体温的寒暑表,除本身牵扯到空间底度量外,尚需时间度量底要求。 量一分钟也许不够,量到两分钟或三分钟才能有结果。 看护量温度常常要看手表者在此。 单位或工具本身常常牵扯到时空底度量,即令引用底方式不牵扯到时空底度量,然而假如所用的单位或工具本身就牵扯到时空底度量,就整个的度量说,时空底度量仍未能免。 时空底度量底基本于此可见。 3. 动底度量 。 动是非常之麻烦的意念,动的东西也是非常之难于应付的东西。 量静的东西似乎容易一点,量动的东西似乎就难得多。 量动的东西底动本身就非牵扯到时空底度量不可。 我们这里所说的是度量,不是比较而已。 比较比较地容易。 我们可以用动比动而得到快慢感。 在钟表未发明以前,我们早就可以彼此赛跑以决定谁快谁慢。 可是,在那种情形之下,除非聚世界英雄于一场,我们无法谈世界最高纪录。 量动不只是以动比动而已,它非有标准单位不行。 假如我们说,某某走路走得很快或者再快没有,这句话也许有根据,在经验上他也许是所向无敌。 但是,没有和他走过的人仍然不知道他走路底速度。 假如我们说他一点钟走卅里路,情形就不同了。 没有看见过这位先生走路的人也知道他走路底速度。 其所以如此者当然就是因为后一句话里举出两标准单位,一是一点钟,一是一里路。 量动总得要量时间与空间。 从这一点说,时空底度量更是显而易见。 4. 度量愈复杂牵扯到时空处愈多 。 简单的度量有好些已经牵扯到时空底度量,复杂的度量更是难免。 复杂的度量不仅是工具底引用而且有意念上的设计,事实上的安排。 不但工具本身难免牵扯到时空底度量,设计上及安排上也不容易避免时空底度量。 在复杂的度量中,工具本身就难免复杂。 复杂的工具难免利用间接的单位以为标准,而间接的单位难免利用时空底单位。 设计与安排情形同样,大致说来,度量愈复杂,牵扯到时空底度量的地方也愈多。 度量的特点是有具体的特殊的接受方式,不仅有意念上的接受方式而已,其结果是就摹状说,度量是比较地精细的摹状;就规律说,它也是比较地精细的规律。 我们已经说过科学离不了度量,而在科学中的度量又大都是精细而又复杂的。 在科学中的度量更是离不了时空底度量。 本知识论是以常识所谓知识及科学那样的知识为知识的知识论,度量对于这样的知识既如此重要,它对于本知识论当然重要。 度量既然重要,时空底度量底重要,更是无法否认。 三、质量问题A. 质与量1. 对于质的不满意感 。 质在经验上有时很容易分别,有时又似乎很难。 红与绿普通叫作质,它们似乎很容易分别,我们也许会说它们底分别大。 红与黄情形同样。 可是,假如我们让黄深到金黄,同时又让红向橘红底方向改变,我们会有两不同而又不容易分别的颜色,我们会说它们底分别小。 质有时分别大,有时分别小。 对于分别大的质,我们靠官觉似乎就能够得到很清楚的印象,对于分别小的质,我们难免感觉到模糊。 看落霞清楚的感觉固然有,模糊的感觉也有。 例子可举的非常之多。 就是分别很大的质有时也给我们以一种困难。 以上说的红与黄底分别总算显明,然而如果我们把它们彼此之间的居间色按秩序排列起来,在此排列中的红与黄和单独的红与黄就不一样,它们单独地所有的显明的分别可以在此排列中消失。 至于由经验中的质而推到致此质的原因,例如看病,问题似乎更复杂。 别的不说,本条所举的种种,已经足够表示我们对于质,难免有一种不满意的感觉,我们也许要说:质不客观。 在本条我们不预备讨论这句话有何解释,或说得过去与说不过去,我们只表示我们对于质难免有这样的感觉。 2. 对于量底不同的感 。 我们对于量感觉不同,我们大都觉得它比质客观或者靠得住。 我们有此感觉,此感觉也是有理由的。 在本条我们暂不谈理由。 单就量说,我们实在没有感觉到与质在客观上,或在靠得住上,有甚么不同的地方。 假如我们看见一大堆的米,我们也不容易说出多少来,我们也许感觉到多,也许感觉到少。 即以另外一堆米来作比较,我们也有对于质所有的同样的问题;如果多少太悬殊,我们当然容易感觉到谁多谁少,如果多少相差不远,我们不容易感觉到谁多谁少。 前者相当于质方面底分别显明,后者相当于质方面底分别不显明。 相当于红黄底排列,我们也可以把量排列起来,我们也可以把相差很远的量底居间量排列起来,使成一渐次由小到大或由大到小的秩序,在此秩序中,不邻近的量虽可以有很大的分别,而邻近的量就没有多大的分别。 结果是单独的量底分别也许很大,而在此排列中的量底分别,我们也许不感觉其大。 总而言之,单就量说,我们并不见得真的感觉它比质来得客观或靠得住。 3. 客观感是从度量得来的 。 可是对于量我们的确有一种客观感或可靠感。 这感觉是有理由的或有根据的,虽然这理由或根据不是从量本身得来的。 我们底客观感或实在感是从度量得来的。 度量了之后的量,的确给我们以实在感或客观感。 假如对于上条所说的大小相差不远的两堆米,我们用量米的器具去度量它们,我们也许会发现一堆是一担零五升,另一堆是一担零三升。 果然如此,我们会觉得前一堆米多于后一堆米。 如果度量底结果和我们底感觉不一致,我们会惊异,可是虽然惊异,然而仍然会说原来还是这一堆多。 如果度量底结果和我们底感觉一致,我们会说,究竟这一堆米比那一堆多。 量所给我们底实在感或客观感是从度量得来的而不是量本身所有的。 其所以如此者,当然是因为度量本身牵扯到对于官觉者为中立的标准。 这标准底引用也靠我们底官感。 即以那一担零五升的米而论,第二次量也许只有一担零四升半,第三次量也许又是一担零五升而有余。 标准底引用当然逃不了官感,可是虽然如此,而标准底中立性并不因此抹杀。 不是量本身比质客观,而是有度量的量,比无度量的质,能够给我们以客观感。 这客观感底根据就是单位底中立性。 4. 引用度量于质 。 度量既可以量量,既有中立性,既因此客观,既因此给我们以靠得住的感觉,何以不引用到质上去呢? 如果我们能够引用度量于质上去,质岂不同样地也能够给我们以客观或靠得住的感觉吗? 在知识不够发达的时候,这办法也许是办不到的。 在知识够发达的时候,这办法是行得通的。 现在的确有引用度量去形容质的办法。 这办法在科学上早已实行。 但是这办法引起一套理论。 有些人以为我们既能引用度量于质,我们就能够化质为量。 另外一班人又在另一方面主张化量为质。 对于所谓化量为质,本书用不着谈到,它根本就不是知识论底问题。 对于化质为量,以后就要讨论。 但是在未讨论这一点之前,我们得表示一下所谓以度量去形容性质。 B. 以度量形容性质1. 引用度量于颜色 。 颜色无疑地是普通所谓性质,也就是本节与量并提的质。 是否所有的颜色都可以用度量底方式去形容,我们不敢说,有些颜色的确可以用度量底方式去形容。 颜色可以分析成某些条件之下的光线底颤动。 光有颤动,颤动底次数有多有少。 在我们底官觉上成为某某颜色的,在此分析上可以说是颤动底次数是如何如何的。 如此我们在官觉上所得到的颜色,与光底颤动底多少,一一相应起来。 颤动底多少当然可以用数目表示。 这就是说颜色可以用数目表示。 光线底颤动底次数底多少是由度量得来的,这就是说,我们可以用度量底结果去形容颜色。 对于好些颜色(也许所有的颜色)这办法已经办到。 有此办法以后,我们对于一些颜色,例如所谓红,也许感觉到有一比较地准确的说法。 虽然在官觉上我们不因此就得到比较地准确的官觉。 2. 别的方面的引用 。 这样的办法现在慢慢地增加。 前面已经提到体温。 烧是一状态,但是在发烧者底经验中,它可以说是性质,或从从前的人底眼光看来,它是一性质。 可是,现在我们可以把发烧底温度和水银底膨胀一一相应起来,利用水银底膨胀以量温度。 现在我们可以说多少度的烧,而不必说,很烧或非常之烧或烧的受不了这样的话。 又如房间里的灯有些亮,有些不亮。 在可以量亮这一条件之下,我们可以说出几种量光亮底单位,以数目表示光亮底大小,而不必说灯光很亮或非常之亮这一类的话。 这样的例子非常之多。 现在可以量气压,量温度,量空气底厚薄,量光线底速度,量电流,量力量,量记忆,量情感,有些也许简单,有些也许复杂,无论如何,有好些是以度量底方式或结果去形容质。 这方法的确使我们对于质也得到一种客观感。 3. 引用底根据 。 以度量底方式或结果去形容质,不止牵扯到普通的度量而已。 它还牵扯到一等式(equation)。 这等式总是有根据的,它是已经发现的知识。 这表示等式底根据总是普遍的共相底关联,而我们能够引用普遍至现象,当然也表示我们有可靠的知识。 仍以体温为例,在体温增加这一现象中,多少体温等于水银某程度底膨胀。 有好几点可以注意。 第一,体温底增加或减少与水银底膨胀有联系。 第二,此联系是有规则的,不是乱来的。 第三,工具底制造要满足种种条件,才能让以上的情形毫无阻碍地现实。 第四,这等式之所表示的情形是分析的,客观的。 病人可以在卅七度五底热度之下,比在卅七度六底热度之下,感到更难过。 但是,这难过是一综合的感觉。 与水银膨胀相等的不是这综合的感觉,而是单独地提出来的病人底温度。 水银底膨胀与别的不相干。 4. 要求正常 。 上条已经说这等式底根据是共相底关联。 这一点非常之重要。 量体温当然是某时某地的动作,这动作是特殊的,所量的对象也是某人在某时某地的体温,这对象也是特殊的。 可是,如果度量只有这特殊的情形,度量底意义完全消灭。 以度量底方式或结果去形容性质也就毫无意义了。 度量总牵扯到普遍的标准,而此普遍的标准总牵扯到一所谓正常。 量温度总有所谓正常的体温,卅六度六总是正常的卅六度六。 如果一寒暑表上的卅六度六不是正常的卅六度六,那个寒暑表就不能引用。 一个人也许是非常的人,也许就一个一个的人说,根本就没有正常的人,然而只要他底体温是卅六度六,他在体温上就是正常的人。 也许就一个一个的寒暑表来说根本没有正常的寒暑表(有些也许有刻上去的花纹,有些也许没有,等等),然而只要水银底膨胀是正常的,度数是正常的,它就是一正常的寒暑表。 要正常的度量才能形容正常的性质。 以度量底方式结果去形容性质,也就是以普遍的方式去决定所形容的性质底所谓。 C. 结果或影响1. 容纳质于度量系统 。 以度量底方式去形容性质当然有很重要的结果或影响。 在这办法实行后的情形之下,所形容的性质也就容纳于度量系统之内。 所形容的性质与别的性质及关系底联系,在这办法未引用之前所得不到的,在此办法既行之后,就可以得到了。 为此联系底工具的当然就是上段(3)条所说的等式。 所谓度量系统是指种种单位,种种工具,种种运用方法,而所谓容纳于度量系统之内就是说能够以度量系统去应付。 以前我们曾说过度量系统是整个的,四通八达的,横贯各门科学的。 它是应付底工具,也是知识底工具。 容纳于度量系统之内的对象也就是能以度量底方法去研究的对象。 前此我们也表示过度量是一有中立性的接受方式,以度量底方式或结果去形容的性质也得到这种中立性,因此也给我们以比较的客观感或实在感。 2. 不同世界底连系 。 能以度量引用到光线底颤动,用此度量底方式或结果去形容颜色,当然也就是把颜色容纳于度量光线底系统之中,而研究颜色底学问也就是研究光线底学问底一部分。 这不过是以颜色为例而已,其余能以此方式引用的性质,情形同样。 我们可以把直接经验中的现象推广到直接经验范围之外。 上面已经提到这样的话:我们底手摆在桌子上,这在表面似乎是简单的事体,其实与手相接触的那一部分的桌子是一大堆的电子往上迎,在桌子的手是一堆的电子往下压。 所谓手摆在桌子上是直接经验范围之内的事,而上迎下压的电子并不是直接经验范围之内的事。 颜色与光线底情形同样。 颜色是直接经验中的事,而光线底颤动底速度不是,它是所谓细微世界的事。 我们把世界分而为三,(一)天文世界,(二)直接经验的世界,(三)细微世界,不但(二)与(三)可通,(一)与(二)也可以通。 因知识底进步,这三个世界可以连系起来。 作它们连系底工具之一的,就是以度量底方式或结果去形容性质这一办法。 3. 使经验上脱节的在理论上打成一片 。 这一点在科学上非常之重要。 科学日精月细底结果常常使对象与内容脱节。 有些对象是日常生活中的现象,在日常生活中我们对于它有一套相当的反应,一套相当的实在感。 科学发达之后,它底内容所描写的现象和在日常生活中所经验的脱节。 在引用度量底方式或结果于性质这一办法实行之后,我们会习惯于这办法实行后所得到的连系。 习惯于这连系之后,不但经验中的比较模糊的现象得到一种比较精确的理解,而且细微世界的现象也得到一种实在感。 病菌学说,对于有相当教育的人,已经是习惯了的学说,这些人不但可以用病菌去理解病况,而且可以把病况所有的实在感转移到病菌上去。 后者也许比较地困难。 年老的中国人在理论上也许接受病菌学说,而在习惯上也许感觉不到病菌底实在。 直接经验的世界与细微世界底沟通愈多,这习惯愈容易形成,而非直接的经验底范围也因此推广。 D. 无所谓化质为量1. 化质为量底说法 。 有人以为以度量底方式或结果去形容性质就是所谓化质为量。 所谓化质为量究竟有如何的说法,我们没有十分想过。 持此说的人也许只求表示B,C两段之所说而已。 果然如此,我们当然也承认所谓化质为量。 可是,有另外的说法是我们所不能承认的。 一说是说质被量化掉了或淘汰了。 这一说如此表示也许是说得过分一点,如此说法,也许根本就没有持此说的人。 间接地表示这思想似乎是有的,相信所有一切都是数目的人无形之中也许持此说。 另一说是质既化为量,则质所有的麻烦问题都没有了。 我们对于质有那不实在不客观感,而量有实在感或客观感。 既然质化为量,质底麻烦问题就免除了。 持后说的人也许比较地多一点。 如果所谓化质为量不只是以B,C两段所说,而是本条所说的二者之一,我们都不赞成。 本段所谓无所谓化质为量就是否认本条所提出的说法。 2. 对于质的感觉未改变 。 请注意以上B,C两段所说的。 如果那说法靠得住,量与质底联系是共相底关联,它是分析的,普遍的,抽象的,不是综合的,特殊的,具体的。 它是分析地相等,不是综合地相同,是抽象地相通,不是具体地一样。 根据这一点,我们可以说,我们虽引用度量于性质,而官觉上的情形没有改变。 联系既是分析的,形容质的量不能综合地,特殊地,具体地,代替所形容的官觉中所觉的质。 卅九度的烧不就是某某在病中所经验的烧得难过,虽然量起来,它是卅九度。 某某在病中所感觉的烧得难过是一种综合的综错杂呈的感觉,而不只是卅九度的烧而已。 假如病人底病是流行感冒,他也许感觉到头痛,四肢无力,等等;他不能把这许多的感觉和烧底感觉分开,虽然他也许可以说这样的话:要是头不痛,也许好过一点。 另外一病人也许同样地有卅九度的烧,然而他底感觉不见得与前一病人一样。 所谓卅九度的烧只就烧说而已,它不就是有此烧度的病人所有的综合的感觉。 3. 联系只是共相底关联 。 质与量在度量之下的联系是共相底关联。 共相底关联决不只是所与或呈现中的形形色色,这这那那。 我们虽然说所与或呈现显示共相底关联,然而它们本身也不只是共相底关联而已。 有的时候质与量在度量之下的联系虽是共相底关联,然而这联系底两端都显示在所与或呈现之中。 以上所说的烧得难过,和寒暑表上的三十九度,都显示在所与或呈现之中。 病人不但感觉到烧得难过,而且可以看见寒暑表上的三十九度。 但是,有的时候情形虽如此,有的时候情形不是如此的。 有的时候质与量在度量之下的联系只是共相底关联而已,此关联没有所与或呈现中的显示,因为此联系底两端之中只有一端在所与或呈现中。 假如我们不谈三十九度的烧而说烧是许多的病菌和白血球打仗,那么病人只感觉到烧得难过而已,他感觉不到,官觉不到,经验不到,病菌和白血球打仗。 在此情形下,这联系只是共相底关联而不是所与或呈现中的特殊的关系。 4. 没有(1)条所说的化质为量 。 照以上的说法,我们虽有以量形容质的办法,然而的确没有(1)条所说的化质为量的结果。 就(1)条所说的第一说法说,量虽形容质,而质没有化掉。 我们尽可以寒暑表量温度,烧不因此就退,原来所有的难过的感觉也不因此就去掉了。 就(1)条所说的第二说法说,质底问题如果原来本是麻烦的,依然麻烦。 不容易分别的性质依然不容易分别。 我们虽可以利用度量以光线底颤动底速度去形容颜色,然而在我们底官觉中,我们仍只看见颜色,而看不见光线底颤动底速度,也看不见数目。 既然如此,原来在官觉中不容易分别的颜色,不因为光线颤动底速度底差别而变为容易分别了。 如果原来不容易分别的颜色在官觉上给我们以麻烦的问题,这麻烦的问题依然保存。 以度量底方式或结果去形容质这一办法底影响,只是C段所述的各点而已,根本没有(1)条所说的那样的化质为量。 至于化质为量尚有别的说法与否,我们不必提到。 四、度量底精确问题A. 度量底中立与客观1. 中立性 。 上面已经谈到度量底客观性。 所谓客观也是前所讨论的客观,详见第三章。 最初所求于度量的是中立性。 中立性不一定是客观性。 中立性虽不必是客观性,而客观性总有中立性。 求中立很容易成为求客观。 如果我们从引用度量底目的着想,我们很容易想到所求于度量的是中立性。 一种目的是生活方面的便利,一种是知识上的可靠。 前一目的在历史上也许在前,也是大多数人所以引用度量的目的。 生活上的便利一大部分是交换上的便利。 为求交换上有便利显而易见需要度量,并且所需要的是度量中的中立性。 贸易总有两方面,总有两方面的官觉者。 两方面的官觉者底官觉也许不一致,因为利害不同更不容易一致。 与其找中立人不如找中立标准。 度量底引用就可以供给这中立的标准。 2. 对于多数感觉者中立性更是重要 。 在第三节A段,我们已经表示,单就量而言,我们官觉到量和质,我们同样地感觉到靠不住。 一官觉者有此问题,两官觉者更是免不了有此问题。 如果这两官觉者是彼此交换底对方,他们底利害也许有冲突,彼此更靠不住彼此底官觉,在官觉者各非其非,各是其是底情形下,假如没有中立者或具中立性的标准,交换会失败。 交换不必牵扯到量,不必以量为标准,然而大都不免牵扯到量。 即以璧换城也牵扯到量。 璧与城虽牵扯到量,然而它们底量不至于给我们以困难。 量有时给我们以靠不住的感觉,我们已经表示过,不加度量的量和质有同样的情形。 不引用度量的量仍然从直接的官觉得来,假如直接的官觉有靠不住的问题,对于量的官觉也有这问题。 不同的官觉者对于量的官觉依然要求有中立性的标准。 3. 中立性不是知识所要求的 。 这种具中立性的标准是实际生活所要求的,不是知识之所要求的。 严格地说,具中立性的标准不一定是可靠的。 它是交换者或官觉者之间要求得到彼此底同意底工具,原来不同意的官觉者或交换者,可以借有中立性的标准,以得到同意,以成交换。 对于有中立性的标准所要求的不是量方面底正确表示。 假如各交换者各用自己底度量单位,连这中立性都不容易办到。 在事实上各用各底单位也是常有的事。 实际生活所需要的中立性不一定就是知识所需要的。 知识所需要的是有客观性的中立性。 求知者对于所官觉的量所要求的是究竟多少。 究竟多少总离不了客观地多少。 客观是类观。 这就是说,如果我们引用我们所共同承认的单位,所共同承认的引用方法,我们所得的不得不如此或不得不如彼的多少就是客观的多少。 显而易见求知者所要求的中立性,是有这样的客观性的中立性。 度量不止于给我们以中立性而已,而且可以给我们以客观性。 中立性底问题比较地简单,客观性底问题比较底复杂。 客观问题牵扯到准确问题。 B. 度量底准确1. 准确与精切 。 我们先介绍两名称,一是准确,一是精切。 度量有两方面的问题,一是度量动作合乎标准与否底问题,一是度量底结果和所度量的对象是否完全符合的问题。 前者是准确与否底问题,后者是精切与否底问题。 精切底标准是符合。 精切底极限是完全符合。 完全符合也许是办不到的。 我们可以把接近完全符合的为程度高的符合,不接近的为程度低的符合。 如此精切有程度问题。 度量可以非常之精切,也可以不甚精切。 准确不是结果和对象底符合方面的问题,而是度量本身上的问题。 准确的度量是典型化的度量,准确的度量结果是典型化的度量底结果。 所谓典型化的度量是有正常的单位,运用正常的方法而没有错误的度量。 典型化的度量所得的结果就是准确的结果。 简单地说,精切是度量与对象两方面的符合。 而准确是度量本身底正常。 这二者底关系,以后再谈,现在我们只注意到它们底分别而已。 2. 准确的度量 。 我们先论准确。 假如我们量一匹布,小心谨慎地量,遵守方式地量,结果也许是卅尺零一寸。 假如我们再量一次,同样地小心谨慎,同样地遵守方式,结果也许是卅尺零半寸。 照以上所说的用字方式,这两次的度量不能同样地精切,然而我们可以说它们同样地准确。 假如我们不但量两次而且量好几次,并且都小心谨慎地遵守方式地量,结果也许是30. 1、30. 05、29. 8、30. 1、30. 0等等。 我们也许要说这匹布卅尺长。 说它卅尺长只表示它不短于廿九尺九寸也不长于卅尺零一寸而已。 照这个说法,说那匹布卅尺长并不表示它究竟是否那么长,只表示它底长度在廿九尺九寸与卅尺零一寸之间而已。 如果我们用更精细的工具,更没有出入的量法,更小心地量下去,我们也许说这匹布卅尺零一分长,而说它卅尺零一分长,并不表示它究竟是否那么长,只是说它底长度在卅尺与卅尺零二分之间而已。 如果我们有方法表示我们底度量没有毛病,度量底结果是准确的结果。 也许表示度量没有毛病底方法是相当难找的,也许我们要用别的度量去表示原来的度量没有毛病。 如此说来,有无毛病底标准本身仍是度量问题,而其结果就是独立的标准谈不到。 这一方面的困难,我们现在不预备讨论。 3. 准确不够,还要精切 。 这样的准确没有完全符合底问题,可是有比较地接近完全符合底问题。 它虽然没有精切底极限是否达到底问题,然而仍有比较地精切或比较地不精切底问题。 头一点我们要注意的,是准确这一标准不够,我们还要精切这一标准。 没有精切这一标准,准确只是动作之合乎条件法则而已。 它只是动作者或度量者这一方面或单方面的问题,在理论上它不一定表示所度量的对象如何。 可是度量的确要表示对象如何,度量底意义就在表示对象如何。 第二点我们应当注意的,所量的对象非有某一定的情形不可。 所谓某一定的情形就是某某长度,或某某宽度,或某某重量,等等。 度量底意义就是要表示这种一定的情形,度量底结果要接近这种一定的情形。 即以上面所说的那匹布而说,它也许是卅尺长,也许是卅尺零一分长,也许是卅尺零半分长。 它不能三者都是,虽然它可以三者都不是。 假如它三者都不是,它仍然有某一定的长度。 我们也许不知道某一定的长度如何地长,可是如果我们不承认有此某一定的长度,度量根本没有意义。 即令我们底度量正常,我们只能说我们底动作没有错误而已,我们不能说度量底结果表示所量的东西底情形如何。 我们可以回到那匹布上去。 假如那匹布没有一定的长度,我们只能表示我们好几次的度量都正常,也能说度量底结果准确,可是,没有法子说那匹布卅尺长。 要能说那一匹布卅尺长,就得承认它有某一定的长度,而正常的度量底结果接近此长度。 4. 所谓一定的量 。 以上一定两字不妥,它们会引起误会。 我们想不到别的好字眼,我们只能把可能的误会提出解释。 一定两字会给人们以不变底印象。 有些读者看见一定的长度几个字之后,会发生这样的疑问,会说难道东西底长短,宽窄,轻重,都不变吗? 其实所谓某一定的情形和变与不变这一问题毫不相干。 所谓一定是相对于度量而说的,说对象有某一定的情形就是说对象不受度量底影响,它不因度量而加长或因度量而减轻。 我们可以利用类似外在关系底理论,表示度量与所度量的对象底关系,是彼此相互外在的。 对象底量尽可以变。 上条所说的那一匹布也许未洗之前长,既洗之后短,夏天里长,冬天里短,伸直的时候长,卷起来的时候短。 它底长短可以改变。 可是,我们虽然承认它底长短可以改变;然而我们仍不能不承认:我们所以能说那匹布底长短可以改变,就是因为我们承认有某一定的情形。 那匹布在未洗之前要有一定的长度,才能够因洗而变短,要在冬天里有一定的长度,它才能在夏天里变长,要在夏天有一定的长度,在冬天里才能变短。 第三点我们要注意的,就是度量不改变所量的对象。 这句话当然笼统。 稍微精细一点地说,我们应该说,度量不能无法则地更改所量的对象。 如果度量改变对象,可是有法则地改变(假如量体温底动作无论何时何地都增加病人底温度一度,度量仍可以照常进行),则我们所要求的情形仍然达到。 这一方面所牵扯的问题多,但是,在这里我们不必一一讨论。 5. 非假设此一定的情形不可 。 此种一定的情形从另外一方面看来也非假设不可。 有时我们怕一次的度量靠不住,因此作数次的度量,而以数次度量的平均结果为结果,例如(2)条所云。 在(2)条我们曾假设度量底结果如下:30. 1、30. 05、29. 80、30. 1、30. 0等等,也许我们底平均是30. 01尺,我们说那匹布是卅尺零一分。 假如我们几次度量之中有一次底结果是29. 0尺,我们也许会把这一次的度量撇开。 我们所以能如此办法者,从度量这一方面着想,也许我们说这一次的度量不正常。 说这句话底理由大致是它底结果离平均的结果太远。 所谓平均的结果是多数次度量底平均结果,它表示多数度量底趋势,而多数度量底共同的趋势比一次度量底结果靠得住些。 我们可以利用这趋势以为标准,把离此标准太远的度量撇开,说它不正常。 可是在这多数次度量之中,每一次的度量都不能作标准,何以联合起来的趋势又能作标准呢? 单独地说,只要度量者没有感觉到不正常,每一次的度量和另一次的度量都同样地正常,何以对于结果离平均太远的度量,我们又说它不正常呢? 这问题发生之后,在理论上,我们不能不承认离平均愈近的度量愈正常,其结果愈准确。 在这句话上打住而不往下再寻求理由的人们会以这么一句话为原则(方法上的原则)。 不谈究竟的人们会在这原则上打住,说他们在这原则上打住,就是说他们不再寻求这一原则底理论上的根据。 可是我们的确可以问何以离平均结果愈近的结果也愈准确呢? 如果发生这一问题,我们只能说,平均的结果最接近对象或对象底某种一定的情形。 这当然就是说平均的结果之所以准确,因为它比较地精切。 这是我们要注意的第四点。 6. 精确底程度底高低问题 。 精确(精切与准确合一)有程度问题。 大致说来,我们所承认的度量底工具愈精细,运用的方法愈严密,度量者底训练愈高明,精确底程度愈高。 反过来,工具愈粗,运用的方法愈含糊,度量者底训练愈幼稚,精确底程度愈低。 照此说法,精确底程度不是和度量正常与否相联系的。 在(2)条我们已经设有两套度量,每一套每一次的度量都是正常的。 可是一套底工具比较地粗疏,另一套的工具比较地精细,一套的方法比较地含糊,另一套的方法比较地严密。 这两套度量底分别不在正常与否,而在严密与含糊,精细与粗疏。 假如粗疏度量底结果,一匹布是卅尺,而比较精细的度量底结果是卅尺零一分,我们也要说后一结果比较地精确。 可是我们何以能如此说呢? 照(2)条底说法,说一匹布卅尺长,我们实在只表示它不短于廿九尺九寸,也不长于卅尺零一寸。 同样地说法,说一匹布卅尺零一分长,我们实在只表示它不短于卅尺零九厘,也不长于卅尺零一分一厘,前者底分别大,后者底分别小。 前者两极端之间有量的居间数多,后者两极端之间有量的居间数少。 前者两端底距离宽,后者两端底距离窄。 可是为甚么我们可以说后者比较地精确? 二者都是正常的,所以也都是准确的。 如果我们发生这样的问题我们又免不了回到精切上去。 程度底高低实在是精切问题。 显而易见,距离宽的和距离窄的同样地准确,因为对象底长度都在这两套不同的两端之间。 可是它们不同样地精切,距离窄的两端把对象底长度夹在相差比较地小的数目之间,所以比较地精切。 所谓精确不只是准确而已,而且是精切。 本节底题目是度量底精确,而照我们底说法,精确有两成分,一是准确,一是精切。 7. 求精确有绕圈子的情形 。 上面说精确底程度有高低,程度底高低靠工具底精细与否,方法底严密与否。 这二者都需要标准。 标准底引用在实际上是绕圈子的。 木尺底长度也许很有出入,也许有张家尺长李家尺短底问题。 对于这样的问题,也许我们可以承认一标准木尺以为标准,而决定张李之间那一根尺比较地合乎标准。 这一方面的问题是生活上的问题。 标准木尺本身也有问题,它也许变更它底长度,也许我们要知道它底变更多少。 如果如此,我们也许要利用银尺以为标准,看那根木尺底变更多少。 银尺本身也有变更问题,我们也许要利用金尺以为标准,看银尺底变更有多少。 由此类推,我们也许利用白金尺与光线底浪波。 可是,到了白金和光线底浪波,我们也许要回头,又回到金尺银尺木尺上面去。 实际上我们要知道一标准单位靠得住与否,我们只有这绕圈子底办法。 这绕圈子底办法在理论上相当的麻烦。 最初使人想到的是标准既要回头,我们没有一至当不移的根据以为理论上底出发点。 其实圈子虽绕而我们并不因此就回到原来的地方。 所绕的圈子不是面上的圆圈而是螺旋式的往上升的圈子。 每一圈的过程增加精细严密底程度。 不过增加底速度不是同等的速度而已。 有一点我们得承认:理想的精细严密或绝对的精细严密不仅在实际上达不到,即在理论上也只是极限。 虽然如此,在实际上这圈子绕的非常之有用。 我们绕了这么多圈子,度量工具的确因此要精细的多,方法的确要严密的多,而这二者的确可增加度量底精确程度。 事实上度量底精确程度比两百年或一百年前高的多。 C. 武断成分1. 度量中的武断成分 。 实际上的度量达不到理想上的精切。 这情形许多人认为是度量底不满处。 其实这是一普遍的情形之下的情形。 我们对于这普遍的情形不愿有所论列。 度量确有这样的情形。 也许有人以为度量之所以有这情形是因为度量本身是武断的。 我们要表示度量虽有武断成分,然而度量不因此就武断。 假如度量根本不武断,则度量底精切不能达到理想的或绝对的精切程度,理由和武断成分之有无不相干。 本段论度量中的武断成分。 度量中的确有武断成分。 自然没有尺寸也没有斤两。 这些都是我们所介绍的。 简单的单位如此,复杂的单位也难免如此。 同时尺有所短,寸有所长。 就尺有所短说,我们也许觉得尺不应该那么短。 其余的单位都有类似的问题。 这类问题,都不免使人感觉到度量中有武断成分。 尺不必那么长,斤也不必那么重。 除约定俗成底理由外,我们似乎找不着别的理由表示尺非那么长不可,或斤非那么重不可。 2. 自然的单位底便利处 。 上面已经说过,自然界没有本来的尺寸斤两。 尺寸斤两都是前此所说的非自然的单位。 自然的单位的确有一种便利处或好处。 十个梨绝对地是十个梨,不多不少;从精切着想,十个梨绝对地精切,既然数得不错,也绝对地准确。 十天底情形就稍微差一点,因为头一天底开始和最后一天底终了,发生准确与精切底问题。 但是十天也有点象十个梨。 自然的单位跟着自然跑,只要我们数得不错,它没有上段(3)条(6)条底问题。 说桌子上有十个梨,而这句话果然是真的,它决不至于等于说桌子上有9. 9与10. 1之间的梨。 以个体为单位,我们感觉到一种至当不移的情形。 只要我们数得不错,结果如何,量底多少也就直截了当地那样。 我们当然有另一种不清楚的问题,例如数天上的星多少或数头上的头发多少,或请一不识柳树的人数院子里的柳树多少,但是这种含糊的情形和我们底本题不相干。 这只表示或者我们数不下去,或者即令我们数得下去,而我们大概会有错误而已,它只表示精切的结果难得,而不表示精切有程度底问题。 3. 非自然的单位底武断成分 。 度量中的非自然的单位才有上段(3)(6)两条所说的情形。 说一匹布是卅尺,我们实是说它不短于廿九尺九寸,也不长于卅尺零一寸;布底长度在这两长度之间。 非自然的单位也有它的好处或便利处。 街上卖梨的人情愿论斤出卖而不愿论个出卖。 假如论个出卖,大的好的一下子就卖完,而小的坏的卖不出去。 非自然的单位虽有此好处,然而逃不了以上所说的含糊的情形。 这含糊的情形,使人想到这种单位底不自然,或这种单位底武断成分。 自然界本来没有尺寸斤两,以尺寸斤两为单位总有武断的地方。 这些单位有点象语言文字或符号。 就历史说,语言文字当然有它们底来踪去迹,可是我们的确找不出别的理由去表示它非那样不可。 如果我们不谈语言文字而谈符号,我们也许容易感觉符号底引用是武断的。 度量中的非自然的单位是我们引用的,我们引用它们没有自然界本身底理由,只有我们历史风俗习惯方面的理由,而从自然界底现象着想总免不了武断成分。 4. 定某某为单位底武断 。 这里所谓武断成分不是单位既定之后的问题,也不是单位未定之前的问题,而是定底问题。 只有定某单位为单位才有武断成分。 单位既定之后,约已定,俗已成,引用单位并没有甚么武断。 未定之前,尺只是那么长的长度,斤只是那么重的重量而已,也无所谓武断成分。 也许有人会说,未定尺以为标准单位之前,无所谓尺,也没有尺那样长的长度,未定斤以为标准单位之前,无所谓斤,也没有斤那样重的重量。 我们底意思是,未定尺以为单位之前,仍有尺那样长的长度,未定斤以为单位之前,仍有斤那样重的重量。 这一点非常之重要,以后也许还要提到。 无论如何,尺那样的长度虽有,然而那样的长度不必是一尺,斤那样的重量虽有,然而那样的重量不必是一斤。 定那样长的长度为一尺有武断成分,定那样重的重量为一斤也有武断成分。 D. 度量不武断1. 用单位不武断 。 定单位,即以某某为单位,例如斤尺磅码,虽有武断成分,而度量不因此就武断。 度量虽免不了要单位,然而不就是单位。 别的暂且不说,定单位虽武断,用单位不因此也就武断。 即以上面所说的量布而论,以尺那样长的长度为一尺虽有武断成分,而用尺去量布底量法(即以布底边沿成直线式地量下去),并没有武断成分。 我们所要因度量而得到的既然是布底长度,我们当然就长底方面去量。 如果我们从一匹布底中心去量,我们底动作相当的不方便,为方便起见,我们从一匹布底边沿量下去。 如果我们不沿一直线量下去,而沿一曲线量下去,我们所得的结果会彼此相差到一非常之大的程度。 曲线底曲度太没有标准,而沿边的直线有布匹本身底边沿以为标准。 可见以尺那样长的长度为标准单位虽有武断成分,而运用尺底方法并不武断。 量体温情形同样,华氏和摄氏底度数不同,就彼此底单位说,它们既可以不同,当然没有至当不移的理由非那样不可,可是,单位虽不同而运用底方法不因单位底不同而有差别。 至少从运用底方法说,定单位虽有武断成分,而度量不因此就武断。 2. 以某长度为尺虽有武断成分而该长度无所谓武断成分 。 我们这里所谈的单位有两方面。 即以尺而论,一方面是尺底所谓,十寸为尺的尺,或一丈底十分之一为尺的尺;另一方面是代表一尺的那根竹棍或木板。 在度量我们不仅是以意念(即前一方面的尺底所谓)去接受所与,而且是把一具体的东西(即后一方面的竹棍或木板)与所要量的东西作具体的比较。 照着后一方面的结果如何,我们在前一方面也就如何地去接受所与,此所以量布的结果(也许是平均结果)是卅尺,我们说那匹布卅尺长。 定那样长的长度为一尺虽有武断成分,而那样长的长度没有武断成分,或根本无所谓武断成分。 所以那根竹棍或木板无所谓武断或不武断,而它与那匹布底长度底比率也无所谓武断。 那根竹棍或木板虽然是尺,然而也是所与,就它为所与说,它与布同样地是所与;那根竹棍或木板虽然是尺,然而也是东西,就它是东西说,它与布同样地是东西;它与布底比率也是所与或东西底关系。 以那根竹棍或木板底长度为尺虽有武断成分,而它与布底比率无所谓武断成分。 度量所要得的是这比率,这比率是度量底中坚成分,这比率不武断,度量也不武断。 3. 用单位底方法底根据 。 运用单位或工具底方法大部分是根据自然律的。 引用寒暑表底方法就是遵守自然律的。 病人吃过饭后不马上就量体温,因为吃饭之后体温增加,这时的体温不能代表病人底体温。 仅仅量了半分钟的寒暑表底度数不能代表病人底体温,因为寒暑表本来是凉的,要克服它本身底凉度非有相当的时间不行,半分钟也许不够。 寒暑表本身之所以能为量温度底工具就靠水银底膨胀和温度底高低有那一一相应的情形,而这情形也是遵守自然律的。 至于量电光底大小,量自来水底多少,量光底速度等等都有同样的情形。 说运用单位底方法大部分是要遵守自然律的,就是说这些方法不是我们所能随便选择的,即有选择,我们底选择也不是自由的。 这也就是说,运用方法大部分不是武断的。 而不武断底理由是因为它们大部分是遵守自然律的。 4. 不以精切底极限为目标度量不至于不满意 。 以上已经够表示度量不武断。 度量底结果虽有B段(3)(6)两条所说的情形,而此情形并不是因为度量武断。 度量根本就不武断。 可是B段(3)(6)两条所说的情形给我们以不满意的感觉。 这不满意底感觉底根源,我们也许这样地表示:度量底结果也许准确而不精切。 假如量一匹布底结果是卅尺,而照以上的说法,这等于说这匹布不短于廿九尺九寸,也不长于卅尺零一寸,但是该匹布究竟有多么长呢? 也许它恰恰是卅尺长,但是,它也许不是。 如果它不是卅尺的话,我们会感觉到虽然它不是卅尺,而照度量我们应该说它是卅尺,这就给我们以武断的感觉。 其实这是以精切底极限为目标而得来的感觉。 不以此达不到的极限为目标,我们不会有此感觉。 不以精切底极限为目标,我们不会盼望度量底结果和布匹底长度完全符合。 我们只盼望前者接近后者而已。 如果我们只盼望前者接近后者,我们不会有那不满意的感觉。 同时意念与对象不完全符合这一现象不限于度量,任何意念都有同样的问题。 四方这一意念如彼,当前的所与所呈现的四方是否与意念完全符合,我们也没有法子决定。 意念上的相等是有传递质的,而官觉上所感觉的相等不必是有传递质的或没有传递质的;在意念上假如A=B,B=C,C=D,X=Y,Y=Z,则A=Z,而在官觉上,在同样的情形之下,A也许不等于Z。 其所以如此者,当然是因为官觉上的相等只是差不多的相等而已,我们没有法子决定官觉上的相等和意念上的相等完全符合。 可是,我们既不以精切底极限为目标,我们不盼望官觉上的四方与四方底定义完全符合,也不盼望官觉上的相等和意念上的相等完全符合。 以精切底极限为目标,度量当然不满意,不以精切底极限为目标,我们不至于有不满意底感觉。 这情形是普有的情形,不限于度量,而度量之有这情形并不是表示度量武断。 我们底意见以为度量根本不武断。 五、约俗学说底理论A. 问题1. 约定俗成成分 。 对于度量有一看法,我们现在译为约俗学说,这就是英文所说的Conventionalism。 我们译为约俗学说无非是表示约定俗成底意义。 度量之有约定俗成底成分毫无问题。 上节所论的武断成分也就是约定俗成底成分。 我们既然承认定尺那样长的长度,或斤那样重的重量,以为单位,有武断成分,我们也就是承认,没有固然的理由,非引用这样的单位不可。 引用的理由只是历史风俗习惯上的理由,这当然就是说,引用这样的单位有约定俗成底成分。 假如所谓约俗学说就在这一点上打住,我们根本不必提出讨论,以上的讨论已经够表示我们底意见。 约俗学说不止于要求我们承认这一点而已,它还要求我们承认离开度量根本无所谓宽长厚,不止于无所谓多少尺长,多少尺宽,多少寸厚,而已。 离开以尺寸为单位的度量,的确无所谓几尺长,几尺宽,几寸厚,这我们当然承认;可是问题是,离开度量,是否也无所谓宽长厚呢? 2. 从前的笔墨官司 。 问题底发生似乎还曾经有一次笔墨官司。 有一位先生,似乎是罗素,说了一句这样的话:伦敦到多维底距离比伦敦到巴黎底距离短,或类似这样的话。 在这位先生,这也许是一句非常之平凡的话,以为假如一个人由伦敦旅行到巴黎经过多维时,他只走了一小半路底光景。 话虽平凡,然而这是一实在主义者无形之中所说的话。 无论说这话的人在当时想起这话所引起或所能引起的困难与否,在常识上和实在主义者底立场上,这样的话是可以说的。 本书认为常识虽可以批评,虽有时非批评不可,然而常识不能抹杀,批评常识仍得以常识为出发点。 照常识说,这样一句话也许有意义不清楚底毛病,然而不是根本不能说的话。 可是,这样的话是约俗主义者所不能承认的话。 3. 约俗学说底说法 。 卜荫加雷是一约俗主义者,他对于以上的话当然不赞成。 他是以上所说的笔墨官司底主角。 他究竟如何说法,我不知道。 无论如何,他底主要点是说,离开度量无所谓长短。 这一方面的议论不是无中生有,它有它底理论。 即以北平到徐州和北平到南京而论,究竟距离哪一近哪一远呢? 从常识着想,这问题似乎太幼稚,我们会说,当然是北平到南京比北平到徐州底距离长。 可是显而易见,这说法不是没有条件的说法。 头一点要注意的是方向。 假如我们底方向不是由北到南,而是先向北经北极而冲过西半球,然后经南极而回到东半球,再由南向北,我们会感觉到由北平到南京比由北平到徐州距离近。 第二是行动底路线,这可以说是第一点底一部分的问题。 假如我们不单从方向着想而且从路线着想,以上的问题也就不那么简单。 我们可以由北平先到汉口,由汉口到南京,然后再由南京到徐州,果然如此,徐州离北平比南京远。 第三是地形。 假如山东一带全是高山峻岭,上下起伏,则由北平遵海而南到南京比由北平直达徐州为近也是可能的。 这类的理由不必再举,以上所举的已经足够表示距离底远近不是简单的事,它相对于许多的条件。 可是,这一套理论和说离开度量无所谓长短轻重,等等是两件事。 约俗主义者不仅说长短轻重等等是相对的,而且说它们是不能离开度量的。 4. 本节底问题:离开度量有没有长短轻重等等 。 说离开度量无所谓长短轻重不只是说任何单独的东西无所谓长短轻重等等。 假如宇宙间只有一件东西,这东西的确没有长短轻重等等,因为显而易见所谓长短轻重等等都是靠关系来形成的,而在宇宙间只有一件东西这一条件之下,根本没有多数东西底关系。 说离开度量无所谓长短轻重等等,照我们底说法,也不只是说离开度量我们没有精确的知识,所以我们不知长短轻重等等。 长短轻重等等是一件事,而我们知道长短轻重等等又是一件事。 本节底问题就是约俗主义者底主张,我们要讨论的就是离开度量有没有长短轻重等等。 B. 这问题与手术论1. 相应于一意念或概念的手术 。 手术论,在论时空那一章已经提出过。 在那一章我们没有从详讨论手术论,在本段我们也不预备作详细的讨论。 我们只提出约俗学说和手术论底关系而已。 约俗主义底推广或延长就是手术论,而手术论底主旨也就是约俗主义底根据。 手术论底主旨就是说每一意念是一套相当的手术。 照这说法,没有相当手术的当然就不是意念或概念。 在日常生活中,没有相当的手术的意念非常之多,在科学,特别是在物理学,有相当的手术的意念也许不少。 度量底动作也是手术,而一部分的意念,有度量方面的动作,以为它们相当的手术。 照此说法,所谓长短轻重等等不但有相当的手术,而且是某某套相应的手术。 没有相应的手术的,根本不成其为意念或概念;没有相应的度量方面的动作的也不是度量方面的意念;这就是说,离开度量无所谓长短轻重等等。 2. 长短轻重概念有相应的度量上的手术 。 就度量说,所引用的单位也许不同,所运用的方法也许彼此互异,根据上面的说法,手术也不同;手术既不同,相当于这些不同的手术的意念也不同,即令我们表示这些意念底名词也许一样。 Bridgman教授曾说过这样的话:以某种器具底引用而推算出来的长度和以尺量出来的长度是两种不同的长度,因为所引用的手术是两种不同的手术。 相当于两种不同的手术的是不同的意念,所以说一件东西多么长,其所谓长要看手术如何。 也许说一件东西多么长是一套手术,说另一件东西多么长是另一套手术。 既然如此,则对于前一东西底所谓长和对于后一东西底所谓长是两不同的意念,虽然我们都用长字表示。 我们也许要问这两不同的意念是否有共同的地方。 在不持手术论的人们,答案大约是肯定的,他们会说手术虽不同而所谓长是一样的,不同点只在度量上的手术而已。 在持手术论的人们,答案一定是否定的,他们会说,两套不同的手术既然没有共同的手术,当然没有共同的意念。 两不同的手术只是两不同的意念而已。 3. 手术论之下的约俗学说 。 在接受手术论底条件之下,不同的手术是不同的意念;既然如此,不仅离开度量无所谓长短轻重等等,离开某某度量制度也无所谓与此制度相应的意念。 前者已经提到度量所引用的单位或工具可以不同,所运用的方法也可以彼此互异,这就是说,有不同制度的度量。 不同制度的度量总难免牵扯到不同的动作或不同的手术。 这就是说,相当于不同的度量制度的长短轻重等等的意念也是不同的意念。 照此说法,当然是离开某某度量制度即无所谓相当于该度量制度的长短轻重,不止于说离开度量无所谓长短轻重而已。 约俗主义者大约免不了是手术论者,在理论上它似乎应该是手术论者;他底主张不仅是说离开度量,而且是说离开某某度量制度,即无所谓某某所谓长短轻重等等。 照此说法,伦敦到多维和伦敦到巴黎孰短孰长,当然要靠度量,而离开度量,它们本身无所谓长短了。 C. 度量底根据1. 度量和别的接受方式底不同 。 说一匹布卅尺长的确牵扯到尺,而自然界无所谓尺。 可是我们已经表示过好几次,度量虽是一接受方式而与寻常的接受方式不一样。 寻常的接受方式只是意念而意念底引用是直接的,没有工具以为媒介的。 度量中的意念底引用不是这样直接的。 度量中有单位意念例如一尺一寸,一天一年。 就意念说,我们是以所谓一尺,所谓一寸,所谓一天,所谓一年,去接受所与。 单位有自然与非自然底分别,单位意念也有。 非自然的单位有武断成分,非自然的单位意念,例如所谓尺,所谓寸,也有武断成分。 以有武断成分的意念去接受所与,这接受似乎也有武断成分。 假如度量是寻常的接受方式,我们似乎不能不承认这一点。 对于别的意念,我们说它们是得自所与还治所与的工具。 对于度量上的单位意念,我们不太容易说它们是得自所与。 它们是还治所与的工具,然而还治底历程不是直接的。 对于别的意念,例如对于树意念或桌子意念,我们也许会说前一意念不是我们创作的,没有武断成分;后一意念是我们创作的,有武断成分;引用桌子这一意念于所与,这武断成分也许浸入桌子那样的东西。 这就是说,指一所与说它是桌子,这也许有武断成分,好象指出一块木板说它是尺一样。 自然界本来没有尺,定尺那样长的长度为一尺有武断成分,原始时代本来没有桌子,制造桌子那样的东西以为桌子,也许有武断成分,但是,这与度量是两件不同的事。 2. 有具体的表现的意念 。 在度量,我们不仅有单位意念而且有相应于这些意念的具体的东西,以为这些意念底表现。 这就是说,我们不仅有所谓尺寸斤两而且有表现它们底具体的工具。 仍以量布而论,我们实在是以尺与布两相比较,看它们底比率如何。 所谓以尺与布两相比较,不只是以所谓尺这一意念直接地引用到布上去例如看一看布,说它是多少尺而是以一具体的东西与另一具体的东西,两相比较,一方面是一匹布,另一方面是一根竹棍或一木板。 以尺那样长的长度为尺和认那根竹棍或那块木板为尺虽有武断成分;而那样长的长度和那根竹棍或那块木板无所谓有武断成分或无武断成分。 两具体的东西底长短上的比较无所谓有武断成分。 那匹布与那根竹棍或那块木板底长短上的比率无所谓武断成分,这比率只是所与而已。 这一点非常之重要。 单就那匹布,那根竹棍或那块木板说,它们都只是呈现或所与而已;它们在长短上的比例也只是呈现或所与而已。 3. 两件东西的比率,或单位和被量的东西底比率 。 问题是度量是尺与布底比率呢? 还是一根竹棍或一块木板和一匹布底比率呢? 前一比率我们称为前者,后一比率我们称为后者。 假如那匹布是卅尺长,说它是卅尺长也就是说它与尺底比率是卅与一底比率。 可是因为尺底具体的表现是一根竹棍或一块木板,说那匹布是卅尺长,同时也就是说那匹布与某根竹棍或某块木板底比率是卅与一的比率。 有前者即有后者,有尺与布底比率就有某根竹棍或某块木板和布底比率;可是,有后者不必有前者。 显而易见,那根竹棍或那块木板不一定是一根尺。 假如它不是一根尺,说一匹布和它底长短上的比率是卅与一,我们当然不能说该匹布有卅尺长,我们根本不知道它有多长。 可见后者本身不一定是度量。 假如是的,经过这次比较手术之后,我们应该知道该匹布多么长。 要我们知道该匹布有多么长,我们得先知道该根竹棍或该块木板是一根尺。 这也就是说,只有前者是度量。 只有前者才有引用度量单位于所与的情形,后者没有。 4. 度量底根据是东西或事体底比率 。 在第(3)条我们只表示只有前者是度量,后者不是。 在第(2)条我们也曾表示过后者只是所与而已。 后者虽只是所与,然而它是前者底根据。 问尺与布底比率靠得住与否,就是问某根竹棍或某块木板和布底比率如何呈现,并且问该根竹棍或该块木板是否为尺。 某根竹棍或某块木板和布底比率虽只是所与或呈现,然而这比率不因此就不重要。 它非常之重要,因为它是度量底根据。 既然后者不是度量,既然只有前者才是度量,离开度量仍有长短轻重等等。 显而易见该匹布比该根竹棍或该块木板长,这两所与之间仍有长短。 假如我们坚持离开度量就没有长短这一主张,我们会有两个结果,而这两结果都是持此主张者所不赞成的。 一是度量有时会不能交通,非亲量者有时会不知道所量的结果如何。 单说一匹布与一根竹棍或一块木板底比率是卅与一底比率,而不表示前者为尺,当时不在场的人们不知道该匹布多么长,这就是所谓度量有时会不能交通。 第二结果是,照此说法,度量根本不必有约定俗成的成分(Convention)。 如果度量非有约俗成分不可,则离开度量有所谓长短轻重等等;如果离开度量无所谓长短轻重等等,则度量不必有约俗成分。 本书既承认度量有约俗成分,所以也坚持离开度量有长短轻重等等。 D. 不同的度量制度1. 不同的度量制度即为不同的度量说 。 约俗主义者除主张离开度量没有长短轻重等等外,还要主张不同的度量制度即为不同样的度量。 这主张本书也不赞成。 本书承认度量有约俗成分,也承认度量有武断成分。 度量底单位可以不同,计算也可以不同,制度也可以不同。 我们之有不同的度量制度,我们承认。 英法底度量制度就不同,这两制度和中国从前的制度也可以说不同。 英国的尺不是法国的米达。 英国底单位意念有以十二进位为定义的,以十二位进为定义的单位意念和以十位进为单位意念底计算也不同。 除单位与计算外,有时还有手术底不同。 以脚步量远近和以测量量远近,这二者底手术也不同。 这种情形我们承认。 问题是这种度量制度底不同是否表示度量底不同。 2. 不同制度的度量不是不同的度量 。 本书认为度量底单位虽不同,计算虽不同,手术虽不同,然而我们并不因此就有不同样的度量。 单位底不同,计算底不同,都属于约俗不同底范围之内。 约俗底不同当然有武断的成分在内,可是,我们前此已经表示过,这种武断成分,就单位说,在于单位底建立,而不在于单位底引用。 就计算说,情形相同。 这种武断成分并不影响到度量。 显而易见,单位虽不同,计算虽不同,度量底结果并不因此就不同。 这就是说它们不因此就是不同样的度量。 手术底不同不属于约俗不同底范围之内。 手术牵扯到运用方法而运用方法不是随便的或自由的。 所量的对象和所引用底工具都影响到应有某种手术。 手术既然有应该与否底问题,当然就不是武断的。 因此也不只是约定俗成的而已。 手术影响到度量,我们也许要说手术不同的度量是不同样的度量。 3. 结果可以相等 。 即令手术不同,度量是不同样的度量,我们也不能跟着就说不同样的度量底结果不同。 假如甲乙是两不同样的度量,甲度量底典型结果是甲,乙度量底典型结果是乙,而甲乙又彼此不同,那么甲乙两度量根本没有相通的地方,它们不只于不同样而已。 可是假如甲乙两不同样的度量底典型的结果是相同的,或者说翻译起来是相等的,那么甲乙两度量虽不同样而它们底结果仍彼此可以对译。 在这种情形之下,不同样的度量底不同点,除手术外,仍只是表示或引用底工具不同而已。 以测量量远近和以脚步量远近的确牵扯到不同的手术,可是,如果结果是典型的结果,无论我们以里计或以丈计,它们或者相等,或者虽不相等而相差不远。 不仅单位不同,计算不同,不影响到度量底结果,即手术不同也不影响到度量底结果。 4. 结果可以彼此对译 。 以上所说的单位不同,计算不同,手术不同都可以简称之为制度不同。 我们虽承认度量有制度底不同,然而我们不承认度量因此就有结果底不同。 我们说结果总是彼此可以对译的。 但是何以能对译呢? 一方面度量是有根据的,这根据就是C段所说的。 它可以说就是度量所要量的对象。 它就是上段所说的离开度量而依然健在的长短轻重等等。 度量不就是这对象。 另一方面,度量中的单位,计算,手术等等都不影响这对象。 假如度量影响到对象,假如对象因度量底不同而不同,那么不同的度量当然会有不同的结果。 约俗主义者或者认为离开度量根本无所谓长短轻重等等,或者认为虽有长短轻重等等而这些都因受不同的度量底不同的影响而不同起来了。 这两看法都是本书所不敢赞同的,本书当然也不赞成约俗主义。 E. 度量成一系统1. 度量自成一系统 。 在第一节我们曾说度量自成一系统。 在这一点上我们要说几句话。 我们承认度量有制度底不同,例如各地方有各地方,各时代有各时代底度量制度。 我们也承认度量有精粗底分别,例如量光底速度和量一匹布有多长,这二者底精粗上的分别非常之大。 我们当然也承认各门学问底对象不同,所要量的对象也不同,因此所用的工具和所用的方法不同,例如在心理试验室量反感和在农场量谷子的确不同。 我们也承认度量中有武断成分和约俗成分,可是,我们还是说度量自成一系统。 2. 以标准单位去接受所与 。 度量之自成一系统,因为度量总是利用标准单位以为我们接受所与的工具。 单位虽不同,而要求单位底引用,则在任何度量都是一样的。 度量之自成一系统,因为度量总要利用相当于对象底要求底方式。 对象虽不同,方式虽不同,而方式之相当于对象则在任何度量总是一样的。 度量之自成一系统,因为最基本的度量总是时空底度量。 度量也许有非常之精的,也许有非常之粗的,然而都和时间或空间底度量相通或相牵连。 在动作上,不同的度量牵扯到不同的手术,可是,在意念上不同的单位成一四通八达的意念图案。 不同的引用方式,也在这意念图案范围之内。 3. 摹状与规律底作用 。 本章提出度量问题,一方面因为它本身重要,另一方面也因为它表示摹状与规律底作用。 度量中的单位意念最足以表示这二者。 说房门有两尺半宽,一方面摹状房门,可是,另一方面我们的确是以两尺半去规律房门那样宽的宽度。 说度量最足以表示摹状与规律作用,也就是说它最足以表示,在知识经验中,我们实在是以得自官觉者(虽然有约俗成分)还治官觉。 度量既成一系统,我们可以用它作为一整套的接受方式看待。 这一套接受方式和别的接受方式一样,也化所与为事实。 此所以由龙头村经金殿到昆明城,事实上有十一公里。 发布时间:2025-05-30 15:50:58 来源:班超文学网 链接:https://www.banceo.com/article/11954.html