首页 / 数学钥 / 杜知耕

卷一凡例

2025-08-18 14:34 数学钥

钦定四库全书

数学钥卷一凡例

柘城杜知耕撰

凡例【计十四则】

一则

数非图不明图非手指不明图用甲乙等字作志者代指也作志必用甲乙等字者取其笔画省而不乱正文也甲乙等字尽则用子丑等字又尽则用乾坤等字如云甲乙丙丁方形则指第一图戊巳庚辛方形

则指第二图或错举二字谓

第一图为甲丁或乙丙形谓

第二图为戊辛或巳庚形又

指第一图左下角曰甲角右

下角曰乙角又或有两角相

连如第三图两形相同一角

如第四图举一字不能别为某形某角则连用三字曰寅癸丑角或壬癸子角以中一字为所指之角二则

四边皆等四角中矩者曰方形如第一图四角中矩四边两两相等者曰直形如第二图或四边等或两边等而四角俱不中矩者曰象目形如第三图四边俱

不等两角中矩两

角不中矩者曰斜

方形如第四图角

不中矩两边相等

者曰梯形如第五

图边及角俱不等

者曰无法形如第六图三边形有一方角者【甲为方角】曰勾股形如第七图无方角者曰三角形如第八图三则

形边之界曰线线之纵者曰长或曰高衡者曰濶或曰广在下者或曰底斜对两角者曰?

四则

形之积步积尺曰积曰容方形之容或曰羃

五则

线之作志处曰防

六则

两线相并曰和

七则

以此线比彼线彼线之大于此线者以此形比彼形彼形之大于此形者或曰较或曰差如甲丙线之大于甲乙线为丙乙则丙乙为两线之较线或曰两线之

差丁己形之大于丁戊形为庚己形

则庚己为两形之较形或曰两形之

八则

甲乙线上作甲丙方形各边俱等于甲乙曰甲乙线上

方形其形之容即甲乙自乘

之数丁戊衡线戊己纵线内

作丁己直形己庚与丁戊等

庚丁与戊己等曰丁戊偕戊己两线矩内形其形之容即丁戊戊己相乘之数

九则

甲乙衡线上作丙丁纵线而丙丁乙与丙丁甲两角俱

方角则丙丁为甲乙线上之垂线

十则

两直线引至无穷不相离亦不相遇曰平行线平行线内任作几形皆等高如甲乙丙丁两线平行两线内

作戊己庚三角形与辛壬直形两形

之高必相等凡两形等高者则曰同

在平行线内

十一则

甲乙丙三形并为一形形曲如磬曰甲乙丙磬折形

十二则

方形并举四边曰方周

十三则

方形或圆形外实中虚曰环其中虚处曰虚形或曰缺形

十四则

甲乙形以丙丁线分之成甲丁丙乙两形或再以戊己

线分之成甲庚丙己戊丁庚乙四形

谓甲丁等二形或甲庚等四形曰分

形谓甲乙元形曰全形

数学钥卷一凡例

六卷。清杜知耕(生卒年不详)撰。杜知耕字端甫,号伯瞿,河南柘城人,自幼好学,熟读天文历算书。康熙二十六年 (1687) 举人。1681年著《数学钥》,1700年著 《几何论约》,均收入 《四库全书》。《数学钥》以 《九章算术》章目为序,按线、面、体三部之法隶之,用通俗语言与直观图形诠释《九章》,体例与《九章》相同。该书每卷之首标注凡例,以实例问答形式阐述算法,辅以必要图形,以例引述,寓法于算,触类旁通,清晰易懂,且于每问之下附著其理,颇受西法影响。梅文鼎在《勿庵历算书记》中称:“杜端甫数学钥,图注九章,颇中肯启,可为算家程式。”该书版本除《四库》本外,有1681年杜氏式好堂刊本,现存北大图书馆;1898年上海算学书局石印本《古今算学丛书》本; 1916年开封荣兴斋石印本。

猜你喜欢

  • 畿輔通志卷一

    地理類三〈都㑹郡縣之屬〉詔諭世祖章皇帝順治元年登極詔曰我國家受天眷佑肇造東土烈祖邁圖鴻緒皇考彌廓前猷遂舉舊邦誕膺新命迨朕嗣服雖在沖齡締念紹庭永綏厥位頃縁賊氛游熾極禍明朝是用托重親賢救民塗炭乃方馳金鼓旋..

    0 雍正畿辅通志 2025-08-18
  • 卷末

    钦定四库全书几何论约卷末柘城杜知耕撰増题【利氏曰丁先生言欧几里得六卷中多研察有比例之线竟不及有比例之面故因其义类増益数题补其未备窦复増一题窃弁于首仍以题防从先生旧题随类附演以广其用俱称今者以别于先生旧..

    0 几何论约 2025-08-18
  • 卷六之首

    钦定四库全书几何论约卷六之首柘城杜知耕撰界説六则一界凡形相当之各角等而各等角旁两线之比例俱等为相似之形如两角形之甲乙丙三角与丁戊己三角俱等其甲角旁之甲乙与甲丙若丁角旁之丁戊与丁己余两等角旁之各两线其比..

    0 几何论约 2025-08-18
  • 卷五之首

    钦定四库全书几何论约卷五之首柘城杜知耕撰界説十九则【前四卷所论皆独几何也此下二卷所论皆自两以上多几何同例相比者也此卷以虚例相比絶不及线面体诸类六卷则论线角圜界诸类及诸形之同类相比者也】一界分者几何之几..

    0 几何论约 2025-08-18
  • 卷四之首

    [子部,天文算法类,算书之属,几何论约钦定四库全书几何论约卷四之首柘城杜知耕撰界説七则一界此直线形居他直线形内此直线形为他直线形内切形二界此直线形居他直线形外此直线形为他直线形外切形三界圜内直线形以各角切..

    0 几何论约 2025-08-18
  • 卷三之首

    钦定四库全书几何论约卷三之首柘城杜知耕撰界説十则一界凡圜之径线等或从心至圜界线等为等圜如甲乙戊己两径等或丁丙辛庚从心至圜界等即两圜等二界凡直线切圜界过之而不与界交为切圜线甲乙在圜外为切圜线若丙丁入圜内..

    1 几何论约 2025-08-18
  • 卷二之首

    钦定四库全书几何论约卷二之首柘城杜知耕撰界説二则一界凡直角形之两边函一直角者为直角形之矩线如甲乙偕乙丙函甲乙丙直角得此两边即知直角形大小之度若别作两线与甲乙乙丙各等亦知丁乙直角形大小之度则两线为直角形..

    0 几何论约 2025-08-18
  • 卷一之首

    钦定四库全书几何论约卷一之首柘城杜知耕撰界説三十六则【凡造论先当分别解説论中所用名目故作界説】一界防无长短广狭厚薄二界线有长短无广狭厚薄【线有曲有直】三界线之界是防四界直线止有两端两端之间上下更无一防..

    2 几何论约 2025-08-18
  • 卷六目录

    钦定四库全书数学钥卷六目録柘城杜知耕撰勾股一则勾股求?二则勾?求股三则股?求勾四则勾股积及勾股较求?五则?及勾股较求勾股积六则?及勾股积求勾股较七则?及勾股和求勾股较八则勾股和及勾股积求?九则勾股和及勾股积求..

    1 数学钥 2025-08-18
  • 卷六凡例

    钦定四库全书数学钥卷六凡例柘城杜知耕撰凡例一则纵曰股衡曰勾斜曰?二则股大于勾者曰勾股较?大于勾者曰勾?较?大于股者曰股?较勾股并大于?者曰?和较三则勾股并曰勾股和勾?并曰勾?和股?并曰股?和勾股?并曰勾股?和亦曰?..

    1 数学钥 2025-08-18
  • 卷五下之下

    钦定四库全书数学钥卷五下之下柘城杜知耕撰方程一则二色方程设稻三石菽二石共价银八两二钱四分又稻四石菽五石共价银一十二两二钱求二色价法曰列稻三石菽二石价八两二钱四分于右列稻四石菽五石价一十二两二钱于左先以..

    2 数学钥 2025-08-18
  • 卷五下之上

    钦定四库全书数学钥卷五下之上柘城杜知耕撰盈朒一则盈适足设和买一物每人出银七两盈六两每人出银五两适足求物价人数法曰列七两盈六两于右列五两于左以左上乗右下【得三十两】为物实右下六两为人实另以左上右上对减【..

    2 数学钥 2025-08-18
  • 卷五上之下

    钦定四库全书数学钥卷五上之下柘城杜知耕撰均输一则田地之多寡设甲乙丙三人以田地多寡应一年差役甲田八十畆乙田六十畆丙田四十畆求各值日数法曰分置三人田数各以三百六十日乗之【甲得二万八千八百乙得二万一千六百丙..

    2 数学钥 2025-08-18
  • 卷五上之上

    钦定四库全书数学钥卷五上之上柘城杜知耕撰商功一则修筑计积设修堤七千二百尺上濶八尺下濶三十尺高四十尺求积法曰并两濶折半【得一十九尺】为实以高乗之【得七百六十尺】再以长【七千二百尺】乗之得五百四十七万二千..

    2 数学钥 2025-08-18
  • 卷五目录

    钦定四库全书数学钥卷五上之上目録柘城杜知耕撰商功一则修筑计积二则以积计工三则以工计日一法四则以工计日二法五则坚土壤土之较六则迟疾求齐一法七则迟疾求齐二法八则迟疾求齐三法卷五上之下均输一则田地之多寡二则..

    2 数学钥 2025-08-18
  • 卷五凡例

    钦定四库全书数学钥卷五凡例柘城杜知耕撰凡例一则以此防分之防为彼几分之几之倍数即以彼防分之防为此防分之防之倍数两数必相等设甲数十二乙为甲四分之三数九丙为甲三分之二数八以丙乗乙得七十二以乙乗丙亦得七十二更..

    3 数学钥 2025-08-18
  • 卷四目录

    钦定四库全书数学钥卷四目録柘城杜知耕撰少广一则立方求积二则直体求积三则堑堵求积四则刍荛求积五则三角体求积六则六边体求积【八边十二边附】【増】七则五边体求积【九边附】八则圆体求积【増】九则撱圆体求积【増..

    2 数学钥 2025-08-18
  • 卷四凡例

    钦定四库全书数学钥卷四凡例柘城杜知耕撰凡例一则形为体之界在上之界曰靣在下之界曰底底与面有长广而无厚薄故底面之积曰平积二则体之纵者曰长衡者曰广立者曰高三则底面长广及高皆等者曰立方如第一图底面皆方而高不与..

    2 数学钥 2025-08-18
  • 卷三附

    钦定四库全书数学钥卷三附柘城杜知耕撰分法一则命分设银四十两三人分之求毎人应分银数法曰置银为实以人数除之得一十三两余一不尽则以法为分母以不尽之一为分子命为一十三两又三分两之一解曰三分两之一即三钱三分三三..

    3 数学钥 2025-08-18
  • 卷三下

    钦定四库全书数学钥卷三下柘城杜知耕撰衰分【诸分附】一则合率差分设有银一百二十一两一钱七分五厘买稻麦菽三等粮买稻一分每斗价九分二厘麦二分毎斗价八分五厘菽三分每斗价三分六厘求三色粮各若干法曰置共银为实另二..

    3 数学钥 2025-08-18

微信分享

微信分享二维码

扫描二维码分享到微信或朋友圈

链接已复制